Search results
Results From The WOW.Com Content Network
This allows deconvolution to be easily applied with experimental data that are subject to a Fourier transform. An example is NMR spectroscopy where the data are recorded in the time domain, but analyzed in the frequency domain. Division of the time-domain data by an exponential function has the effect of reducing the width of Lorentzian lines ...
Cellular deconvolution algorithms have been applied to a variety of samples collected from saliva, [5] buccal, [5] cervical, [5] PBMC, [6] brain, [2] kidney, [1] and pancreatic cells, [1] and many studies have shown that estimating and incorporating the proportions of cell types into various analyses improves the interpretability of high ...
XPS requires high vacuum (residual gas pressure p ~ 10 −6 Pa) or ultra-high vacuum (p < 10 −7 Pa) conditions, although a current area of development is ambient-pressure XPS, in which samples are analyzed at pressures of a few tens of millibar. When laboratory X-ray sources are used, XPS easily detects all elements except hydrogen and helium.
In image processing, blind deconvolution is a deconvolution technique that permits recovery of the target scene from a single or set of "blurred" images in the presence of a poorly determined or unknown point spread function (PSF). [2]
Absorption spectrum of an aqueous solution of potassium permanganate.The spectrum consists of a series of overlapping lines belonging to a vibronic progression. Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum.
Extreme-ultraviolet photoelectron spectroscopy (EUPS) lies in between XPS and UPS. It is typically used to assess the valence band structure. [ 8 ] Compared to XPS, it gives better energy resolution, and compared to UPS, the ejected electrons are faster, resulting in less space charge and mitigated final state effects.
This averaging determines the maximal angular resolution of the scan in the direction perpendicular to the slit: with a 1 mm slit, steps coarser than 1° lead to missing data, and finer steps to overlaps. Modern analyzers have slits as narrow as 0.05 mm.
Bragg diffraction (also referred to as the Bragg formulation of X-ray diffraction) was first proposed by Lawrence Bragg and his father, William Henry Bragg, in 1913 [1] after their discovery that crystalline solids produced surprising patterns of reflected X-rays (in contrast to those produced with, for instance, a liquid).