Ads
related to: quadratic equation values
Search results
Results From The WOW.Com Content Network
The solutions of the quadratic equation ax 2 + bx + c = 0 correspond to the roots of the function f(x) = ax 2 + bx + c, since they are the values of x for which f(x) = 0. If a , b , and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x - coordinates of the points where the graph touches the ...
If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve ...
Given a general quadratic equation of the form + + = , with representing an unknown, and coefficients , , and representing known real or complex numbers with , the values of satisfying the equation, called the roots or zeros, can be found using the quadratic formula,
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
All quadratic equations have exactly two solutions in complex numbers (but they may be equal to each other), a category that includes real numbers, imaginary numbers, and sums of real and imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the quadratic formula. For example, the quadratic equation
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
This quadratic equation has two solutions: = and = But if 0 {\displaystyle 0} is substituted for x {\displaystyle x} in the original equation, the result is the invalid equation 2 = 0 {\displaystyle 2=0} .
which is equivalent to the original equation, whichever value is given to m. As the value of m may be arbitrarily chosen, we will choose it in order to complete the square on the right-hand side. This implies that the discriminant in y of this quadratic equation is zero, that is m is a root of the equation