Search results
Results From The WOW.Com Content Network
A two-dimensional Poincaré section of the forced Duffing equation. In mathematics, particularly in dynamical systems, a first recurrence map or Poincaré map, named after Henri Poincaré, is the intersection of a periodic orbit in the state space of a continuous dynamical system with a certain lower-dimensional subspace, called the Poincaré section, transversal to the flow of the system.
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a ...
Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics ...
Proper motion. Measure of observed changes in the apparent locations of stars. Relation between proper motion and velocity components of an object. A year ago the object was d units of distance from the Sun, and its light moved in a year by angle μ radian/s. If there has been no distortion by gravitational lensing or otherwise then μ = where ...
To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = dr dt), and its acceleration (the second derivative of r, a = d2r dt2), and time t. Euclidean vectors in 3D are denoted throughout in bold.
The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.
Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ˙ = ˙ = Momentum , which corresponds to the vertical component of angular momentum = ˙ , is a constant of motion. That is a consequence of the rotational symmetry of the ...
Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. [1][2][3] Kinematics, as a field of study, is often referred to as the "geometry of motion" and is ...