When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    All principal ideal domains are integrally closed. The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain. Then the following are equivalent. A is a PID. Every prime ideal of A is principal. [13] A is a Dedekind domain that is a UFD.

  3. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in

  4. Principal ideal - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal

    Principal ideal. In mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of ...

  5. Ziegler–Nichols method - Wikipedia

    en.wikipedia.org/wiki/Ziegler–Nichols_method

    The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller. It was developed by John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the I (integral) and D (derivative) gains to zero. The "P" (proportional) gain, is then increased (from zero) until it reaches the ultimate gain , at which the output of ...

  6. Discrete valuation ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_valuation_ring

    Discrete valuation ring. In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R that satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value ...

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    That is, if R is a PID, and a and b are elements of R, and d is a greatest common divisor of a and b, then there are elements x and y in R such that ax + by = d. The reason is that the ideal Ra + Rb is principal and equal to Rd. An integral domain in which Bézout's identity holds is called a Bézout domain.

  8. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    Smith normal form. In mathematics, the Smith normal form (sometimes abbreviated SNF[1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by ...

  9. Principal ideal ring - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_ring

    In mathematics, a principal right (left) ideal ring is a ring R in which every right (left) ideal is of the form xR (Rx) for some element x of R. (The right and left ideals of this form, generated by one element, are called principal ideals.) When this is satisfied for both left and right ideals, such as the case when R is a commutative ring, R ...