Search results
Results From The WOW.Com Content Network
Echolocating bats use echolocation to navigate and forage, often in total darkness. They generally emerge from their roosts in caves, attics, or trees at dusk and hunt for insects into the night. Using echolocation, bats can determine how far away an object is, the object's size, shape and density, and the direction (if any) that an object is ...
Electroreceptive animals use the sense to locate objects around them. This is important in ecological niches where the animal cannot depend on vision: for example in caves, in murky water, and at night. Electrolocation can be passive, sensing electric fields such as those generated by the muscle movements of buried prey, or active, the ...
The marsupial lion, Thylacoleo carnifex, had retractable claws, the same way the placental felines do today. [25] Microbats, toothed whales and shrews developed sonar-like echolocation systems used for orientation, obstacle avoidance and for locating prey. Modern DNA phylogenies of bats have shown that the traditional suborder of echolocating ...
Animal echolocation, animals emitting sound and listening to the echo in order to locate objects or navigate; Echo sounding, listening to the echo of sound pulses to measure the distance to the bottom of the sea, a special case of sonar; Gunfire locator; Human echolocation, the use of echolocation by blind people; Human bycatch
The sounds animals make are important because they communicate the animals' state. [5] Some animals species have been taught simple versions of human languages. [6] Animals can use, for example, electrolocation and echolocation to communicate about prey and location. [7]
Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation , the use of sound by people to navigate. Sonar ( so und n avigation a nd r anging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.
Lazzaro Spallanzani (Italian pronunciation: [ˈladdzaro spallanˈtsaːni]; 12 January 1729 – 11 February 1799) was an Italian Catholic priest (for which he was nicknamed Abbé Spallanzani), biologist and physiologist who made important contributions to the experimental study of bodily functions, animal reproduction, and animal echolocation. [2]
The moth Bertholdia trigona is one of several moth species known to jam the echolocation of its predator. Many tiger moths produce ultrasonic clicks in response to the echolocation calls bats use while attacking prey. [11] For most species of tiger moth these clicks warn bats that the moths have toxic compounds that make them distasteful. [12]