When.com Web Search

  1. Ad

    related to: infinite horizon formula physics 3 equations calculator algebra 1 7

Search results

  1. Results From The WOW.Com Content Network
  2. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    which is known as the discrete-time dynamic Riccati equation of this problem. The steady-state characterization of P, relevant for the infinite-horizon problem in which T goes to infinity, can be found by iterating the dynamic equation repeatedly until it converges; then P is characterized by removing the time subscripts from the dynamic equation.

  3. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  4. Secondary calculus and cohomological physics - Wikipedia

    en.wikipedia.org/wiki/Secondary_calculus_and_co...

    Secondary calculus acts on the space of solutions of a system of partial differential equations (usually nonlinear equations). When the number of independent variables is zero (i.e. the equations are all algebraic) secondary calculus reduces to classical differential calculus.

  5. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...

  6. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below. LQR controllers possess inherent robustness with guaranteed gain and phase margin, [1] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem.

  7. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Together, the state and costate equations describe the Hamiltonian dynamical system (again analogous to but distinct from the Hamiltonian system in physics), the solution of which involves a two-point boundary value problem, given that there are boundary conditions involving two different points in time, the initial time (the differential ...

  8. Bekenstein bound - Wikipedia

    en.wikipedia.org/wiki/Bekenstein_bound

    The universal form of the bound was originally found by Jacob Bekenstein in 1981 as the inequality [1] [2] [3], where S is the entropy, k is the Boltzmann constant, R is the radius of a sphere that can enclose the given system, E is the total mass–energy including any rest masses, ħ is the reduced Planck constant, and c is the speed of light.

  9. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations).Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor. [1]