When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow.Physically, the turbulence kinetic energy is characterized by measured root-mean-square (RMS) velocity fluctuations.

  3. Kolmogorov microscales - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_microscales

    where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.

  4. K-epsilon turbulence model - Wikipedia

    en.wikipedia.org/wiki/K-epsilon_turbulence_model

    Unlike earlier turbulence models, k-ε model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. [2] The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reynolds stress and mean rate of deformations is the same in all directions.

  5. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy). SST (Menter’s Shear Stress Transport)

  6. Energy cascade - Wikipedia

    en.wikipedia.org/wiki/Energy_cascade

    The energy spectrum, E(k), thus represents the contribution to turbulence kinetic energy by wavenumbers from k to k + dk. The largest eddies have low wavenumber, and the small eddies have high wavenumbers. Since diffusion goes as the Laplacian of velocity, the dissipation rate may be written in terms of the energy spectrum as:

  7. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Turbulent flow is defined as the flow in which the system's inertial forces are dominant over the viscous forces. This phenomenon is described by Reynolds number, a unit-less number used to determine when turbulent flow will occur. Conceptually, the Reynolds number is the ratio between inertial forces and viscous forces.

  8. k–omega turbulence model - Wikipedia

    en.wikipedia.org/wiki/K–omega_turbulence_model

    The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).

  9. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow.The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. [1]