When.com Web Search

  1. Ads

    related to: tangential quadrilateral radius worksheet grade

Search results

  1. Results From The WOW.Com Content Network
  2. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The incenter of a tangential quadrilateral lies on its Newton line (which connects the midpoints of the diagonals). [22]: Thm. 3 The ratio of two opposite sides in a tangential quadrilateral can be expressed in terms of the distances between the incenter I and the vertices according to [10]: p.15

  3. Pitot theorem - Wikipedia

    en.wikipedia.org/wiki/Pitot_theorem

    A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]

  4. Newton's theorem (quadrilateral) - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem...

    Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.

  6. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [16]

  7. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus. A rhombus is a tangential quadrilateral. [10] That is, it has an inscribed circle that is tangent to all four sides. A rhombus.