Search results
Results From The WOW.Com Content Network
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
A square can also be defined as a parallelogram with equal diagonals that bisect the angles. If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. A square has a larger area than any other quadrilateral with the same perimeter. [7]
A parallelogram is (under the inclusive definition) a trapezoid with two pairs of parallel sides. A parallelogram has central 2-fold rotational symmetry (or point reflection symmetry). It is possible for obtuse trapezoids or right trapezoids (rectangles). A tangential trapezoid is a trapezoid that has an incircle.
Like kites, a parallelogram also has two pairs of equal-length sides, but they are opposite to each other rather than adjacent. Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid , with an axis of symmetry through the midpoints of two sides.
A parallelogram is equidiagonal if and only if it is a rectangle, [6] and a trapezoid is equidiagonal if and only if it is an isosceles trapezoid. The cyclic equidiagonal quadrilaterals are exactly the isosceles trapezoids.
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles.It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.