When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [ 8 ] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.

  3. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...

  4. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length.

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Parallelograms include rhombi (including those rectangles called squares) and rhomboids (including those rectangles called oblongs). In other words, parallelograms include all rhombi and all rhomboids, and thus also include all rectangles. Rhombus, rhomb: [1] all four sides are of equal length (equilateral). An equivalent condition is that the ...

  6. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]

  7. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  8. Thébault's theorem - Wikipedia

    en.wikipedia.org/wiki/Thébault's_theorem

    Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.

  9. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram. The rectangular cuboid (six rectangular faces), cube (six square faces), and the rhombohedron (six rhombus faces) are all special cases of parallelepiped.