Search results
Results From The WOW.Com Content Network
Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density:
The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries.
The ton of TNT is a unit of energy defined by convention to be 4.184 gigajoules (1 gigacalorie), [1] which is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of TNT. In other words, for each gram of TNT exploded, 4.184 kilojoules (or 4184 joules) of energy are released.
Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units. [1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units. [2]
The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg −1 ⋅K −1. [2] For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3]
In light-water reactors, 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 kg of coal. [16] Comparatively, coal, gas, and petroleum are the current primary energy sources in the U.S. [17] but have a much lower energy ...
The definition of the joule as J = kg⋅m 2 ⋅s −2 has remained unchanged since 1946, but the joule as a derived unit has inherited changes in the definitions of the second (in 1960 and 1967), the metre (in 1983) and the kilogram . [14]
In the SI system (expressing the ratio E / m in joules per kilogram using the value of c in metres per second): [35] E / m = c 2 = (299 792 458 m/s) 2 = 89 875 517 873 681 764 J/kg (≈ 9.0 × 10 16 joules per kilogram). So the energy equivalent of one kilogram of mass is 89.9 petajoules; 25.0 billion kilowatt-hours (≈ 25,000 ...