Search results
Results From The WOW.Com Content Network
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
One possibility to determine a polygon of points of the intersection curve of two surfaces is the marching method (see section References). It consists of two essential parts: The first part is the curve point algorithm, which determines to a starting point in the vicinity of the two surfaces a point on the intersection curve. The algorithm ...
Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original line, so =.
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems
For example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect at most at one point. [1]: 300 In two dimensions (i.e., the Euclidean plane), two lines that do not intersect are called parallel.
The sum of A and B is obtained by first finding the intersection point of line AB with MP, which is M. Next A and B add up to the second intersection point of the conic with line EM, which is D. Thus if Q is the second intersection point of the conic with line EN, then (+) + = + = = + = + (+)