When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .

  3. Theorem of corresponding states - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_corresponding...

    According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree. [1] [2]

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The behavior of a quantum Boltzmann gas is the same as that of a classical ideal gas except for the specification of these constants. The results of the quantum Boltzmann gas are used in a number of cases including the Sackur–Tetrode equation for the entropy of an ideal gas and the Saha ionization equation for a weakly ionized plasma .

  5. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  6. Equation of state - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state

    Thus water behaves as though it is an ideal gas that is already under about 20,000 atmospheres (2 GPa) pressure, and explains why water is commonly assumed to be incompressible: when the external pressure changes from 1 atmosphere to 2 atmospheres (100 kPa to 200 kPa), the water behaves as an ideal gas would when changing from 20,001 to 20,002 ...

  7. Amagat's law - Wikipedia

    en.wikipedia.org/wiki/Amagat's_law

    is the ideal, or universal, gas constant, equal to the product of the Boltzmann constant and the Avogadro constant, T {\displaystyle T} is the absolute temperature of the gas mixture (in K ), x i = n i n {\displaystyle x_{i}={\frac {n_{i}}{n}}} is the mole fraction of the i -th component of the gas mixture.

  8. Boyle temperature - Wikipedia

    en.wikipedia.org/wiki/Boyle_temperature

    This is the virial equation of state and describes a real gas. Since higher order virial coefficients are generally much smaller than the second coefficient, the gas tends to behave as an ideal gas over a wider range of pressures when the temperature reaches the Boyle temperature (or when c = 1 V m {\textstyle c={\frac {1}{V_{m}}}} or P ...

  9. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    The ideal gas (where the particles do not interact with each other) is an abstraction. The particles in real materials interact with each other. Then, the relation between the pressure, density and temperature is known as the equation of state denoted by some function F {\displaystyle F} .