When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  4. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  5. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The case α = 1 gives the series 1 + x + x 2 + x 3 + ..., where the coefficient of each term of the series is simply 1. The case α = 2 gives the series 1 + 2x + 3x 2 + 4x 3 + ..., which has the counting numbers as coefficients. The case α = 3 gives the series 1 + 3x + 6x 2 + 10x 3 + ..., which has the triangle numbers as coefficients.

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In many situations, the center c is equal to zero, for instance for Maclaurin series. ... Let α be a multi-index for a power series f(x 1, x 2, ...

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 11 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .

  8. Bernoulli polynomials - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_polynomials

    A periodic Bernoulli polynomial P n (x) is a Bernoulli polynomial evaluated at the fractional part of the argument x. These functions are used to provide the remainder term in the Euler–Maclaurin formula relating sums to integrals. The first polynomial is a sawtooth function.

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of ⁠ 1 {\displaystyle 1} ⁠ is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :