When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Atmospheric convection - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_convection

    Atmospheric convection is the result of a parcel-environment instability (temperature difference layer) in the atmosphere. [ jargon ] Different lapse rates within dry and moist air masses lead to instability.

  3. Atmospheric thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_thermodynamics

    Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...

  4. Planetary boundary layer - Wikipedia

    en.wikipedia.org/wiki/Planetary_boundary_layer

    In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. [1] On Earth it usually responds to changes in surface radiative forcing in an hour or less.

  5. Convective planetary boundary layer - Wikipedia

    en.wikipedia.org/wiki/Convective_planetary...

    The up and downdrafts of boundary layer convection is the primary way in which the atmosphere moves heat, momentum, moisture, and pollutants between the Earth's surface and the atmosphere. Thus, boundary layer convection is important in the global climate modeling, numerical weather prediction, air-quality modeling and the dynamics of numerous ...

  6. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, [1] and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, [2] developed a simplified mathematical model for atmospheric convection. [1]

  7. Level of free convection - Wikipedia

    en.wikipedia.org/wiki/Level_of_free_convection

    Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.

  8. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    Convection is often categorised or described by the main effect causing the convective flow; for example, thermal convection. Convection cannot take place in most solids because neither bulk current flows nor significant diffusion of matter can take place. Granular convection is a similar phenomenon in granular material instead of fluids.

  9. Inversion (meteorology) - Wikipedia

    en.wikipedia.org/wiki/Inversion_(meteorology)

    Usually, within the lower atmosphere (the troposphere) the air near the surface of the Earth is warmer than the air above it, largely because the atmosphere is heated from below as solar radiation warms the Earth's surface, which in turn then warms the layer of the atmosphere directly above it, e.g., by thermals (convective heat transfer). [3]