When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).

  3. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    Although all of the preceding text is written in terms of divisibility by the generator polynomial, any fixed remainder () may be used and will perform just as well as a zero remainder. Most commonly, the all-ones polynomial ( x n + 1 ) / ( x + 1 ) {\displaystyle (x^{n}+1)/(x+1)} is used, but, for example, the asynchronous transfer mode header ...

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  5. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  6. Coppersmith method - Wikipedia

    en.wikipedia.org/wiki/Coppersmith_method

    The Coppersmith method, proposed by Don Coppersmith, is a method to find small integer zeroes of univariate or bivariate polynomials, or small zeros modulo a given integer. The method uses the Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) to find a polynomial that has the same zeroes as the target polynomial but smaller ...

  7. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    Tonelli–Shanks cannot be used for composite moduli: finding square roots modulo composite numbers is a computational problem equivalent to integer factorization. [ 1 ] An equivalent, but slightly more redundant version of this algorithm was developed by Alberto Tonelli [ 2 ] [ 3 ] in 1891.

  8. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a primitive root modulo 2 p k. [14] Finding primitive roots modulo p is also equivalent to finding the roots of the (p − 1)st cyclotomic polynomial modulo p.