Search results
Results From The WOW.Com Content Network
A Tutorial on Face Recognition Using Eigenfaces and Distance Classifiers; Matlab example code for eigenfaces; OpenCV + C++Builder6 implementation of PCA; Java applet demonstration of eigenfaces Archived 2011-11-01 at the Wayback Machine; Introduction to eigenfaces; Face Recognition Function in OpenCV; Eigenface-based Facial Expression ...
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
An example of a typical computer vision computation pipeline for face recognition using k-NN including feature extraction and dimension reduction pre-processing steps (usually implemented with OpenCV): Haar face detection; Mean-shift tracking analysis; PCA or Fisher LDA projection into feature space, followed by k-NN classification
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel , it was later supported by Willow Garage , then Itseez (which was later acquired by Intel [ 3 ] ).
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
3D model of a human face. Three-dimensional face recognition (3D face recognition) is a modality of facial recognition methods in which the three-dimensional geometry of the human face is used. It has been shown that 3D face recognition methods can achieve significantly higher accuracy than their 2D counterparts, rivaling fingerprint recognition.
The feature-based method of face detection is using skin tone, edge detection, face shape, and feature of a face (like eyes, mouth, etc.) to achieve face detection. The skin tone, face shape, and all the unique elements that only the human face have can be described as features.