Search results
Results From The WOW.Com Content Network
The total curvature of a closed curve is always an integer multiple of 2 π, where N is called the index of the curve or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point.
An intrinsic definition of the Gaussian curvature at a point P is the following: imagine an ant which is tied to P with a short thread of length r. It runs around P while the thread is completely stretched and measures the length C(r) of one complete trip around P. If the surface were flat, the ant would find C(r) = 2πr.
A turning point of a differentiable function is a point at which the derivative has an isolated zero and changes sign at the point. [2] A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points. If ...
The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...
The wavefunction's coefficients can be calculated for a simple problem shown in the figure. Let the first turning point, where the potential is decreasing over x, occur at = and the second turning point, where potential is increasing over x, occur at =. Given that we expect wavefunctions to be of the following form, we can calculate their ...
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
The outer coin makes two rotations rolling once around the inner coin. The path of a single point on the edge of the moving coin is a cardioid.. The coin rotation paradox is the counter-intuitive math problem that, when one coin is rolled around the rim of another coin of equal size, the moving coin completes not one but two full rotations after going all the way around the stationary coin ...