When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the norm of the derivative of T with respect to s. By using the above formula and the chain rule this derivative and its norm can be expressed in terms of γ′ and γ″ only, with the arc-length parameter s completely eliminated, giving the above formulas for the curvature.

  3. Kappa curve - Wikipedia

    en.wikipedia.org/wiki/Kappa_curve

    The kappa curve has two vertical asymptotes. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).The kappa curve was first studied by Gérard van Gutschoven around 1662.

  4. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ 1 and κ 2, at the given point: =.

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The Frenet–Serret formulas are: =, = +, =, where is the derivative with respect to arclength, κ is the curvature, and τ is the torsion of the space curve. (Intuitively, curvature measures the failure of a curve to be a straight line, while torsion measures the failure of a curve to be planar.)

  6. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The reciprocal of the curvature is called the radius of curvature. A circle with radius r has a constant curvature of κ ( t ) = 1 r {\displaystyle \kappa (t)={\frac {1}{r}}} whereas a line has a curvature of 0.

  7. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which appeared in ...

  8. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.

  9. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    A plane curve with non-vanishing curvature has zero torsion at all points. Conversely, if the torsion of a regular curve with non-vanishing curvature is identically zero, then this curve belongs to a fixed plane. The curvature and the torsion of a helix are constant. Conversely, any space curve whose curvature and torsion are both constant and ...