Search results
Results From The WOW.Com Content Network
If two lines a and k pass through a single point Q, then the polar q of Q joins the poles A and K of the lines a and k, respectively. The concepts of a pole and its polar line were advanced in projective geometry. For instance, the polar line can be viewed as the set of projective harmonic conjugates of a given point, the pole, with respect to ...
In Euclidean space, the dual of a polyhedron is often defined in terms of polar reciprocation about a sphere. Here, each vertex (pole) is associated with a face plane (polar plane or just polar) so that the ray from the center to the vertex is perpendicular to the plane, and the product of the distances from the center to each is equal to the square of the radius.
Reciprocation may refer to: Reciprocating motion , a type of oscillatory motion, as in the action of a reciprocating saw Reciprocation (geometry) , an operation with circles that involves transforming each point in plane into its polar line and each line in the plane into its pole
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] The pole is analogous to the origin in a Cartesian coordinate system.
The dual of a convex polyhedron can be obtained by the process of polar reciprocation. [21] Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again. Some polyhedra are self-dual, meaning that the dual of the polyhedron is congruent to the original polyhedron. [22]
Reciprocity in linear systems is the principle that a response Rab, measured at a location (and direction if applicable) a, when the system has an excitation signal applied at a location (and direction if applicable) b, is exactly equal to Rba which is the response at location b, when that same excitation is applied at a.
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.