Ad
related to: eigenvalue problem examples
Search results
Results From The WOW.Com Content Network
In the meantime, Joseph Liouville studied eigenvalue problems similar to those of Sturm; the discipline that grew out of their work is now called Sturm–Liouville theory. [14] Schwarz studied the first eigenvalue of Laplace's equation on general domains towards the end of the 19th century, while Poincaré studied Poisson's equation a few years ...
A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...
The boundary conditions ("held in a rectangular frame") are W = 0 when x = 0, L 1 or y = 0, L 2 and define the simplest possible Sturm–Liouville eigenvalue problems as in the example, yielding the "normal mode solutions" for W with harmonic time dependence, (,,) = where m and n are non-zero integers, A mn are arbitrary constants ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. [ 6 ] The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics ...
For example, if has real-valued elements, then it may be necessary for the eigenvalues and the components of the eigenvectors to have complex values. [ 35 ] [ 36 ] [ 37 ] The set spanned by all generalized eigenvectors for a given λ {\displaystyle \lambda } forms the generalized eigenspace for λ {\displaystyle \lambda } .
6. This implementation does not correctly account for the case in which one dimension is an independent subspace. For example, if given a diagonal matrix, the above implementation will never terminate, as none of the eigenvalues will change. Hence, in real implementations, extra logic must be added to account for this case.
For each λ ∈ R, either λ is an eigenvalue of K, or the operator K − λ is bijective from X to itself. Let us explore the two alternatives as they play out for the boundary-value problem. Suppose λ ≠ 0. Then either (A) λ is an eigenvalue of K ⇔ there is a solution h ∈ dom(L) of (L + μ 0) h = λ −1 h ⇔ –μ 0 +λ −1 is an ...