Search results
Results From The WOW.Com Content Network
Unlike the more familiar coordinate velocity v, proper velocity is synchrony-free [1] (does not require synchronized clocks) and is useful for describing both super-relativistic and sub-relativistic motion. Like coordinate velocity and unlike four-vector velocity, it resides in the three-dimensional slice of spacetime defined by the map frame.
Measurements were made of the radial motion of objects in that galaxy moving directly toward and away from Earth, and assuming this same motion to apply to objects with only a proper motion, the observed proper motion predicts a distance to the galaxy of 7.2 ± 0.5 Mpc. [23]
Moreover, in general relativity, velocity is a local notion, and there is not even a unique definition for the relative velocity of a cosmologically distant object. [17] Faster-than-light cosmological recession speeds are entirely a coordinate effect. There are many galaxies visible in telescopes with redshift numbers of 1.4 or higher. All of ...
Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum = + where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with = ˙ () and = ˙ (), the dots indicating a ...
The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics. If an object is not in motion relative to a given frame of reference, it is said to be at rest, motionless, immobile, stationary, or to have a constant or ...
Speed is a scalar, being the magnitude of the velocity vector which in relativity is the four-velocity and in three-dimension Euclidean space a three-velocity. Speed is empirically measured as average speed, although current devices in common use can estimate speed over very small intervals and closely approximate instantaneous speed.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The history of an object traces a curve in spacetime, called its world line. If the object has mass, so that its speed is necessarily less than the speed of light, the world line may be parametrized by the proper time of the object. The four-velocity is the rate of change of four-position with respect to the proper time along the curve. The ...