Search results
Results From The WOW.Com Content Network
Forward bias (applying a positive voltage to the P-side with respect to the N-side) narrows the depletion region and lowers the barrier to carrier injection (shown in the figure to the right). In more detail, majority carriers get some energy from the bias field, enabling them to go into the region and neutralize opposite charges.
Under reverse bias, the diode equation's exponential term is near 0, so the current is near the somewhat constant reverse current value (roughly a picoampere for silicon diodes or a microampere for germanium diodes, [1] although this is obviously a function of size).
A load line diagram, illustrating an operating point in the transistor's active region.. Biasing is the setting of the DC operating point of an electronic component. For bipolar junction transistors (BJTs), the operating point is defined as the steady-state DC collector-emitter voltage and the collector current with no input signal applied.
A silicon p–n junction in reverse bias. Connecting the p-type region to the negative terminal of the voltage supply and the n-type region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the voltage at the cathode is comparatively higher than at the anode. Therefore, very little current flows until the diode ...
This band alignment is due to the biasing conditions that correspond with forward-active mode; forward bias on the emitter-base junction and reverse bias on the base-collector junction. Licensing I, the copyright holder of this work, hereby publish it under the following license:
In the tunnel diode, the dopant concentrations in the P and N layers are increased to a level such that the reverse breakdown voltage becomes zero and the diode conducts in the reverse direction. However, when forward-biased, an effect occurs called quantum mechanical tunneling which gives rise to a region in its voltage vs. current behavior ...
The reverse bias safe operating area (or RBSOA) is the SOA during the brief time before turning the device into the off state—during the short time when the base current bias is reversed. As long as the collector voltage and collector current stay within the RBSOA during the entire turnoff, the transistor will be undamaged.
When >, a forward bias, the band bends downwards. A reverse bias (<) would cause an accumulation of holes on the surface which would bend the band upwards. This follows again from Poisson's equation. [5] As an example the band bending induced by the forming of a p-n junction or a metal-semiconductor junction can be modified by applying a bias ...