When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    Optionally, perform trial division to check if n is divisible by a small prime number less than some convenient limit. Perform a base 2 strong probable prime test. If n is not a strong probable prime base 2, then n is composite; quit. Find the first D in the sequence 5, −7, 9, −11, 13, −15, ... for which the Jacobi symbol (D/n) is −1.

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers ( Carmichael numbers ) have the property that a n − 1 is 1 (modulo n ) for every a that is coprime to n .

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  5. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.

  6. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  7. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    There are infinitely many Fermat pseudoprimes to any given basis a > 1. [1]: Theorem 1 Even worse, there are infinitely many Carmichael numbers. [2] These are numbers for which all values of with ⁡ (,) = are Fermat liars. For these numbers, repeated application of the Fermat primality test performs the same as a simple random search for factors.

  8. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  9. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The sieve starts with a list of the integers from 1 to n. From this list, all numbers of the form i + j + 2ij are removed, where i and j are positive integers such that 1 ≤ i ≤ j and i + j + 2ij ≤ n. The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2.