Search results
Results From The WOW.Com Content Network
Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.
A subsystem of second-order arithmetic is a theory in the language of second-order arithmetic each axiom of which is a theorem of full second-order arithmetic (Z 2). Such subsystems are essential to reverse mathematics , a research program investigating how much of classical mathematics can be derived in certain weak subsystems of varying strength.
Second order approximation, an approximation that includes quadratic terms; Second-order arithmetic, an axiomatization allowing quantification of sets of numbers; Second-order differential equation, a differential equation in which the highest derivative is the second; Second-order logic, an extension of predicate logic
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.
One thousandth of a second. Shortest time unit used on stopwatches. jiffy (electronics) ~ 10 −3 s: Used to measure the time between alternating power cycles. Also a casual term for a short period of time. centisecond: 10 −2 s: One hundredth of a second. decisecond: 10 −1 s: One tenth of a second. second: 1 s: SI base unit for time ...
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...
In mathematics, more specifically in the study of dynamical systems and differential equations, a Liénard equation [1] is a type of second-order ordinary differential equation named after the French physicist Alfred-Marie Liénard.
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...