When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather into another radioisotope. The isotope produced by this radioactive emission then decays into another ...

  3. Radon-222 - Wikipedia

    en.wikipedia.org/wiki/Radon-222

    Radon-222 (222 Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226.

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  5. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    Since nuclear chain reactions may only require natural materials (such as water and uranium, if the uranium has sufficient amounts of 235 U), it was possible to have these chain reactions occur in the distant past when uranium-235 concentrations were higher than today, and where there was the right combination of materials within the Earth's crust.

  6. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    The 4n decay chain of 232 Th, commonly called the "thorium series" Thorium-232 has a half-life of 14 billion years and mainly decays by alpha decay to radium-228 with a decay energy of 4.0816 MeV. [3] The decay chain follows the thorium series, which terminates at stable lead-208. The intermediates in the thorium-232 decay chain are all ...

  7. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  8. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    A critical chain reaction can be achieved at low concentrations of 235 U if the neutrons from fission are moderated to lower their speed, since the probability for fission with slow neutrons is greater. A fission chain reaction produces intermediate mass fragments which are highly radioactive and produce further energy by their radioactive decay.

  9. Polonium-210 - Wikipedia

    en.wikipedia.org/wiki/Polonium-210

    The decay chain of uranium-238, known as the uranium series or radium series, of which polonium-210 is a member Schematic of the final steps of the s-process.The red path represents the sequence of neutron captures; blue and cyan arrows represent beta decay, and the green arrow represents the alpha decay of 210 Po.