When.com Web Search

  1. Ad

    related to: rotational frequency chart for exercise videos download free offline

Search results

  1. Results From The WOW.Com Content Network
  2. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  3. Revolutions per minute - Wikipedia

    en.wikipedia.org/wiki/Revolutions_per_minute

    1 / 60 ⁠ Hz = 0.01 6 Hz. SI base units. 0.01 6 s −1. Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or r⋅min−1) is a unit of rotational speed (or rotational frequency) for rotating machines. One revolution per minute is equivalent to ⁠ 1 60 ⁠ hertz.

  4. Campbell diagram - Wikipedia

    en.wikipedia.org/wiki/Campbell_diagram

    In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings. It might represent the following cases: Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range.

  5. Rotordynamics - Wikipedia

    en.wikipedia.org/wiki/Rotordynamics

    Rotordynamics (or rotor dynamics) is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage. At its most basic level, rotor dynamics is concerned ...

  6. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    An important concept is the equivalent length, , the length of a simple pendulums that has the same angular frequency as the compound pendulum: =:= = Consider the following cases: The simple pendulum is the special case where all the mass is located at the bob swinging at a distance ℓ {\displaystyle \ell } from the pivot.

  7. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  8. Wilberforce pendulum - Wikipedia

    en.wikipedia.org/wiki/Wilberforce_pendulum

    A Wilberforce pendulum alternates between two oscillation modes. A Wilberforce pendulum, invented by British physicist Lionel Robert Wilberforce around 1896, [1] consists of a mass suspended by a long helical spring and free to turn on its vertical axis, twisting the spring. It is an example of a coupled mechanical oscillator, often used as a ...

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is. where M is the applied torques and I is the inertia matrix.