When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]

  3. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    v. t. e. A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity.

  4. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    A force is known as a bound vector—which means it has a direction and magnitude and a point of application. A convenient way to define a force is by a line segment from a point A to a point B. If we denote the coordinates of these points as A = (A x, A y, A z) and B = (B x, B y, B z), then the force vector applied at A is given by

  5. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    Classical mechanics. In physics, a couple is a system of forces with a resultant (a.k.a. net or sum) moment of force but no resultant force. [1] A more descriptive term is force couple or pure moment. Its effect is to impart angular momentum but no linear momentum. In rigid body dynamics, force couples are free vectors, meaning their effects on ...

  6. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body (ies).

  7. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object. When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically ...

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's first law states that the rate of change of linear momentum p of a rigid body is equal to the resultant of all the external forces Fext acting on the body: [2] Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net ...

  9. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    For the same problem using Lagrangian mechanics, one looks at the path the particle can take and chooses a convenient set of independent generalized coordinates that completely characterize the possible motion of the particle. This choice eliminates the need for the constraint force to enter into the resultant system of equations.