When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric power transmission - Wikipedia

    en.wikipedia.org/wiki/Electric_power_transmission

    The power transmitted by an AC line increases as the phase angle between source end voltage and destination ends increases, but too large a phase angle allows the systems at either end to fall out of step. Since the power flow in a DC link is controlled independently of the phases of the AC networks that it connects, this phase angle limit does ...

  3. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering , three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period.

  4. Three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Three-phase_electric_power

    The phase angle difference between voltage and current of each phase is not necessarily 0 and depends on the type of load impedance, Z y. Inductive and capacitive loads will cause current to either lag or lead the voltage. However, the relative phase angle between each pair of lines (1 to 2, 2 to 3, and 3 to 1) will still be −120°.

  5. Overhead power line - Wikipedia

    en.wikipedia.org/wiki/Overhead_power_line

    Overhead lines or overhead wires are used to transmit electrical energy to trams, trolleybuses or trains. Overhead line is designed on the principle of one or more overhead wires situated over rail tracks. Feeder stations at regular intervals along the overhead line supply power from the high-voltage grid.

  6. Split-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Split-phase_electric_power

    The line to neutral voltage is half the line-to-line voltage. Lighting and small appliances may be connected between a line wire and the neutral. Higher-power appliances, such as cooking equipment, space heating, water heaters, clothes dryers, air conditioners and electric vehicle charging equipment, are connected to the two line conductors.

  7. High-voltage direct current - Wikipedia

    en.wikipedia.org/wiki/High-voltage_direct_current

    Long distance HVDC lines carrying hydroelectricity from Canada's Nelson River to this converter station where it is converted to AC for use in southern Manitoba's grid. A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. [1]

  8. Alternating current - Wikipedia

    en.wikipedia.org/wiki/Alternating_current

    A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.

  9. Utility frequency - Wikipedia

    en.wikipedia.org/wiki/Utility_frequency

    The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it ...