Search results
Results From The WOW.Com Content Network
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.
Thomson's lamp is a philosophical puzzle based on infinites. It was devised in 1954 by British philosopher James F. Thomson, who used it to analyze the possibility of a supertask, which is the completion of an infinite number of tasks. Consider a lamp with a toggle switch. Flicking the switch once turns the lamp on.
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
The simplest Feynman diagram for beta decay.It contains a charged current interaction at each vertex. Charged current interactions are the most easily detected class of weak interactions.
In geometry, the Tammes problem is a problem in packing a given number of points on the surface of a sphere such that the minimum distance between points is maximized. It is named after the Dutch botanist Pieter Merkus Lambertus Tammes (the nephew of pioneering botanist Jantina Tammes ) who posed the problem in his 1930 doctoral dissertation on ...
The stirring makes the water spin in the cup, causing a centrifugal force outwards. Near the bottom however, the water is slowed by friction. Thus the centrifugal force is weaker near the bottom than higher up, leading to a secondary circular (helical) flow that goes outwards at the top, down along the outer edge, inwards along the bottom, bringing the leaves to the center, and then up again.
In atomic physics, a germane effect exists for atoms with more than one electron shell: the shielding effect. In plasma physics, electric-field screening is also called Debye screening or shielding. It manifests itself on macroscopic scales by a sheath (Debye sheath) next to a material with which the plasma is in contact.