Search results
Results From The WOW.Com Content Network
Earth's circumference is the distance around Earth. Measured around the equator, it is 40,075.017 km (24,901.461 mi). Measured passing through the poles, the circumference is 40,007.863 km (24,859.734 mi). [1] Treating the Earth as a sphere, its circumference would be its single most important measurement. [2]
The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk .
Circumference: the length of one circuit along the circle, or the distance around the circle. Diameter: a line segment whose endpoints lie on the circle and that passes through the centre; or the length of such a line segment. This is the largest distance between any two points on the circle.
In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc.It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics , a unit circle is a circle of unit radius —that is, a radius of 1. [ 1 ] Frequently, especially in trigonometry , the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane .
Visualisation showing that the length added to the circumference (blue) is dependent only on the additional radius (red) and not the original circumference (grey) String girdling Earth is a mathematical puzzle with a counterintuitive solution. In a version of this puzzle, string is tightly wrapped around the equator of a perfectly spherical Earth.
The circumference is 2 π r, and the area of a triangle is half the base times the height, yielding the area π r 2 for the disk. Prior to Archimedes, Hippocrates of Chios was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates , [ 2 ] but did not identify ...
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.