Search results
Results From The WOW.Com Content Network
The inert-pair effect is the tendency of the two electrons in the outermost atomic s-orbital to remain unshared in compounds of post-transition metals.The term inert-pair effect is often used in relation to the increasing stability of oxidation states that are two less than the group valency for the heavier elements of groups 13, 14, 15 and 16.
The lanthanide contraction only partially accounts for this anomaly. [11] Because the 6s 2 orbital is contracted by relativistic effects and may therefore only weakly contribute to any chemical bonding, Hg–Hg bonding must be mostly the result of van der Waals forces. [11] [13] [14] Mercury gas is mostly monatomic, Hg(g).
Other effects of the d-block contraction are that the Ga 3+ ion is smaller than expected, being closer in size to Al 3+.Care must be taken in interpreting the ionization potentials for indium and thallium, since other effects, e.g. the inert-pair effect, become increasingly important for the heavier members of the group.
The non-existence of Ga(II) compounds was part of the so-called inert-pair effect. When salts of the anion with empirical formula such as [GaCl 3] − were synthesized they were found to be diamagnetic. This implied the formation of a Ga-Ga bond and a dimeric formula, [Ga 2 Cl 6] 2−. [33]
It is expected that moscovium will have an inert-pair effect for both the 7s and the 7p 1/2 electrons, as the binding energy of the lone 7p 3/2 electron is noticeably lower than that of the 7p 1/2 electrons. This is predicted to cause +I to be a common oxidation state for moscovium, although it also occurs to a lesser extent for bismuth and ...
Mono-, bi-, and trimetallated bismuth-iron cyclopentadienyl complexes [2]. Among the first representatives of the organometallic bismuth chemistry are a series of iron cyclopentadienyl compounds synthesized by Cullen et al. Characteristic to these is a σ Fe-Bi bond, the iron center bound to 1 cyclopentadienyl and to carbon monoxide ligands only having 17 electron in its coordination sphere in ...
This is attributable to relativistic effects, specifically the inert pair effect, which manifests itself when there is a large difference in electronegativity between lead and oxide, halide, or nitride anions, leading to a significant partial positive charge on lead. The result is a stronger contraction of the lead 6s orbital than is the case ...
The reason is that with inorganic lead compounds elements such as nitrogen, oxygen and the halides have a much higher electronegativity than lead itself and the partial positive charge on lead then leads to a stronger contraction of the 6s orbital than the 6p orbital making the 6s orbital inert; this is called the inert-pair effect. [2]