Search results
Results From The WOW.Com Content Network
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Test name Scaling Assumptions Data Samples Exact Special case of Application conditions One sample t-test: interval: normal: univariate: 1: No [8]: Location test: Unpaired t-test: interval
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
To derive the formula for the one-sample proportion in the Z-interval, a sampling distribution of sample proportions needs to be taken into consideration. The mean of the sampling distribution of sample proportions is usually denoted as μ p ^ = P {\displaystyle \mu _{\hat {p}}=P} and its standard deviation is denoted as: [ 2 ]
Bowker's test of symmetry; Categorical distribution, general model; Chi-squared test; Cochran–Armitage test for trend; Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder ...
The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics:
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
One-sided normal tolerance intervals have an exact solution in terms of the sample mean and sample variance based on the noncentral t-distribution. [8] This enables the calculation of a statistical interval within which, with some confidence level, a specified proportion of a sampled population falls.