Ad
related to: pythagoras calculator with angle formula and area
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.
The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.
from the formula for the tangent of the difference of angles. Using s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).
The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...
The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.
Euclid proved that the area of a triangle is half that of a parallelogram with the same base and height in his book Elements in 300 BCE. [1] In 499 CE Aryabhata, used this illustrated method in the Aryabhatiya (section 2.6). [2] Although simple, this formula is only useful if the height can be readily found, which is not always the case.
The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). Although Pythagoras is most famous today for his alleged mathematical discoveries, [132] [207] classical historians dispute whether he himself ever actually made any significant contributions to the field.