When.com Web Search

  1. Ads

    related to: solving multi step equations with distributive property worksheet 3rd grade

Search results

  1. Results From The WOW.Com Content Network
  2. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.

  3. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  4. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  5. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  6. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996. ISBN 3-540-60452-9. (This two-volume monograph systematically covers all aspects of the field.) Hochbruck, Marlis; Ostermann, Alexander (May 2010). "Exponential integrators".

  7. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    The methods for solving equations generally depend on the type of equation, both the kind of expressions in the equation and the kind of values that may be assumed by the unknowns. The variety in types of equations is large, and so are the corresponding methods. Only a few specific types are mentioned below.