Search results
Results From The WOW.Com Content Network
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]
Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, [d] a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. A real polynomial is a polynomial with real coefficients.
In algebra, a multilinear polynomial [1] is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 {\displaystyle 2} or higher; that is, each monomial is a constant times a product of distinct variables.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
In mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials.The monomials form a basis because every polynomial may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial).
To find the interpolation polynomial p(x) in the vector space P(n) of polynomials of degree n, we may use the usual monomial basis for P(n) and invert the Vandermonde matrix by Gaussian elimination, giving a computational cost of O(n 3) operations.
The leading term of a polynomial is thus the term of the largest monomial (for the chosen monomial ordering). Concretely, let R be any ring of polynomials. Then the set M of the (monic) monomials in R is a basis of R , considered as a vector space over the field of the coefficients.
Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.