Ads
related to: ion trap vs tof ring alarm
Search results
Results From The WOW.Com Content Network
An ion trap, used for precision measurements of radium ions, inside a vacuum chamber. View ports surrounding the chamber allow laser light to be directed into the trap. An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment.
In experimental physics, a quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul , who invented the device [ 1 ] [ 2 ] and shared the Nobel Prize in Physics in 1989 for this work. [ 3 ]
The RFQ trap is used convert the radioactive ion beam delivered by the ISOLDE facility into low-energy ion pulses, before it is injected into the MR-ToF mass spectrometer. [5] It does this by electrostatically decelerating the ions and then passing them through a buffer-gas -filled environment. [ 6 ]
In the early 1960s, he coupled a low-field ion mobility drift cell to a sector mass spectrometer. [2] The combination of time-of-flight mass spectrometry and ion mobility spectrometry was pioneered in 1963 at Bell Labs. In 1963 McAfee and Edelson published an IMS-TOF combination. In 1967 McKnight, McAfee and Sipler published an IMS-TOF combination.
A sector instrument can be combined with a collision quadrupole and quadrupole mass analyzer to form a hybrid instrument. [1] A BEqQ configuration with a magnetic sector (B), electric sector (E), collision quadrupole (q) and m/z selection quadrupole (Q) have been constructed [2] [3] and an instrument with two electric sectors (BEEQ) has been described.
The digital ion trap (DIT) is an quadrupole ion trap driven by digital signals, typically in a rectangular waveform, generated by switching rapidly between discrete DC voltage levels. The digital ion trap has been mainly developed as a mass analyzer.
A toroidal ion trap can be visualized as a linear quadrupole curved around and connected at the ends or as a cross-section of a 3D ion trap rotated on edge to form the toroid, donut-shaped trap. The trap can store large volumes of ions by distributing them throughout the ring-like trap structure. This toroidal shaped trap is a configuration ...
The alignment of the two orifices is staggered to trap neutral contamination and protect the high-vacuum region. Charged species (ions) are guided to the second orifice through an intermediate cylindrical electrode ("ring lens"), but neutral molecules travel in a straight pathway and are thus blocked from entering the ion guide.