Search results
Results From The WOW.Com Content Network
The scope for exception handlers starts with a marker clause (try or the language's block starter such as begin) and ends in the start of the first handler clause (catch, except, rescue). Several handler clauses can follow, and each can specify which exception types it handles and what name it uses for the exception object.
C does not provide direct support to exception handling: it is the programmer's responsibility to prevent errors in the first place and test return values from the functions.
In C, break and continue allow one to terminate a loop or continue to the next iteration, without requiring an extra while or if statement. In some languages multi-level breaks are also possible. For handling exceptional situations, specialized exception handling constructs were added, such as try/catch/finally in Java.
Sometimes within the body of a loop there is a desire to skip the remainder of the loop body and continue with the next iteration of the loop. Some languages provide a statement such as continue (most languages), skip, [8] cycle (Fortran), or next (Perl and Ruby), which will do this. The effect is to prematurely terminate the innermost loop ...
In Java—and similar languages modeled after it, like JavaScript—it is possible to execute code even after return statement, because the finally block of a try-catch structure is always executed. So if the return statement is placed somewhere within try or catch blocks the code within finally (if added) will be executed. It is even possible ...
However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language, but many share the same basic structure and/or concept. The While loop and the For loop are the two most common types of conditional loops in most programming languages.
The types of objects that can be iterated across (my_list in the example) are based on classes that inherit from the library class ITERABLE. The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential ...
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops.The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures.