When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    Since 1 is not prime, nor does it have prime factors, it is a product of 0 distinct primes; since 0 is an even number, 1 has an even number of distinct prime factors. This implies that the Möbius function takes the value μ(1) = 1 , which is necessary for it to be a multiplicative function and for the Möbius inversion formula to work.

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    If ⁠ ⁠ really is prime, it will always answer yes, but if ⁠ ⁠ is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2. [132] If this test is repeated ⁠ n {\displaystyle n} ⁠ times on the same number, the probability that a composite number could pass the test every time is at most ⁠ 1 / 2 ...

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    He was able to prove unconditionally that this ratio is bounded above and below by 0.92129 and 1 ... proof of the prime ... 2 and 5, all prime numbers end in 1, 3, 7 ...

  6. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    Primes in the Lucas number sequence L 0 = 2, L 1 = 1 ... This includes the largest known prime 2 136,279,841-1, which is the 52nd Mersenne prime. Mersenne divisors

  7. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.

  8. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    John Selfridge has conjectured that if p is an odd number, and p ≡ ±2 (mod 5), then p will be prime if both of the following hold: 2 p−11 (mod p), f p+10 (mod p), where f k is the k-th Fibonacci number. The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non ...

  9. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    We continue recursively in this manner until we reach a number known to be prime, such as 2. We end up with a tree of prime numbers, each associated with a witness a. For example, here is a complete Pratt certificate for the number 229: 229 (a = 6, 229 − 1 = 2 2 × 3 × 19), 2 (known prime), 3 (a = 2, 3 − 1 = 2), 2 (known prime),