Search results
Results From The WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
For "one-dimensional" (single-indexed) arrays – vectors, sequence, strings etc. – the most common slicing operation is extraction of zero or more consecutive elements. Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6).
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
C# has and allows pointers to selected types (some primitives, enums, strings, pointers, and even arrays and structs if they contain only types that can be pointed [14]) in unsafe context: methods and codeblock marked unsafe. These are syntactically the same as pointers in C and C++. However, runtime-checking is disabled inside unsafe blocks.
Generally, var, var, or var is how variable names or other non-literal values to be interpreted by the reader are represented. The rest is literal code. Guillemets (« and ») enclose optional sections.
C# describes variadic functions using the params keyword. A type must be provided for the arguments, although object[] can be used as a catch-all. At the calling site, you can either list the arguments one by one, or hand over a pre-existing array having the required element type. Using the variadic form is Syntactic sugar for the latter.
Strings with unbalanced quotes or braces, or non-space characters directly following closing braces, cannot be parsed as lists directly. You can explicitly split them to make a list. The "constructor" for lists is of course called list. It's recommended to use when elements come from variable or command substitution (braces won't do that).
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .