When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  3. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  4. Closed and exact differential forms - Wikipedia

    en.wikipedia.org/wiki/Closed_and_exact...

    In 3 dimensions, an exact vector field (thought of as a 1-form) is called a conservative vector field, meaning that it is the derivative of a 0-form (smooth scalar field), called the scalar potential. A closed vector field (thought of as a 1-form) is one whose derivative vanishes, and is called an irrotational vector field.

  5. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  6. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    The term conservative force comes from the fact that when a conservative force exists, it conserves mechanical energy. The most familiar conservative forces are gravity, the electric force (in a time-independent magnetic field, see Faraday's law), and spring force. Many forces (particularly those that depend on velocity) are not force fields ...

  7. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative vector field is always the gradient of a function.

  8. I used to call myself conservative. Then I realized we can’t ...

    www.aol.com/used-call-myself-conservative-then...

    Why people aren’t satisfied. I’m 86, and I’ve voted in lots of elections, sometimes for Republicans and sometimes for Democrats. I considered myself a conservative, but that changed.

  9. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    Definition 2-1 (irrotational field). A smooth vector field F on an open is irrotational (lamellar vector field) if ∇ × F = 0. This concept is very fundamental in mechanics; as we'll prove later, if F is irrotational and the domain of F is simply connected, then F is a conservative vector field.