Search results
Results From The WOW.Com Content Network
A deoxyribonucleotide is a nucleotide that contains deoxyribose.They are the monomeric units of the informational biopolymer, deoxyribonucleic acid ().Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a nitrogenous base, and one phosphoryl group. [1]
This group is a population of cells immunoreactive for dopamine and tyrosine hydroxylase that are broadly distributed in the rostral forebrain, including such structures as: substantia innominata, diagonal band, olfactory tubercle, prepyriform area, striatum (at levels rostral to the anterior commissure), claustrum, and deep cortical layers of ...
Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group.A nucleoside consists simply of a nucleobase (also termed a nitrogenous base) and a five-carbon sugar (ribose or 2'-deoxyribose) whereas a nucleotide is composed of a nucleobase, a five-carbon sugar, and one or more phosphate groups.
Deoxycytidine is a deoxyribonucleoside, a component of deoxyribonucleic acid. It is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the C2' position. Deoxycytidine can be phosphorylated at C5' of the deoxyribose by deoxycytidine kinase, converting it to deoxycytidine monophosphate (dCMP), a DNA precursor.
A principal function of pericytes is to interact with astrocytes, smooth muscle cells, and other intracranial cells to form the blood brain barrier and to modulate the size of blood vessels to ensure proper delivery and distribution of oxygen and nutrients to neuronal tissues. Pericytes have both cholinergic (α2) and adrenergic (β2) receptors ...
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges, blood vessels, and ducts. The two main types of cells in the brain are neurons, also known as nerve cells, and glial cells, also known as neuroglia. [1]
The endothelial cells in the cerebral blood vessel walls are joined tightly to one another, forming the blood–brain barrier, which blocks the passage of many toxins and pathogens [35] (though at the same time blocking antibodies and some drugs, thereby presenting special challenges in treatment of diseases of the brain). [36]
L-DOPA, a precursor of dopamine that crosses the blood–brain barrier, is used in the treatment of Parkinson's disease. For depressed patients where low activity of the neurotransmitter norepinephrine is implicated, there is only little evidence for benefit of neurotransmitter precursor administration.