When.com Web Search

  1. Ads

    related to: understanding large language models

Search results

  1. Results From The WOW.Com Content Network
  2. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. The largest and most capable LLMs are generative pretrained transformers (GPTs).

  3. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training, which introduced GPT-1, the first in its GPT series. [29]

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments. [3] BERT is trained by masked token prediction and next sentence prediction.

  6. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  7. Stochastic parrot - Wikipedia

    en.wikipedia.org/wiki/Stochastic_parrot

    In machine learning, the term stochastic parrot is a metaphor to describe the theory that large language models, though able to generate plausible language, do not understand the meaning of the language they process.

  8. MMLU - Wikipedia

    en.wikipedia.org/wiki/MMLU

    The MMLU consists of about 16,000 multiple-choice questions spanning 57 academic subjects including mathematics, philosophy, law, and medicine. It is one of the most commonly used benchmarks for comparing the capabilities of large language models, with over 100 million downloads as of July 2024. [1] [2]

  9. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A word n-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. [12] It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words.