When.com Web Search

  1. Ads

    related to: grain boundaries and dislocations free printable test for kindergarten

Search results

  1. Results From The WOW.Com Content Network
  2. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain

  3. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material.

  4. Pinning points - Wikipedia

    en.wikipedia.org/wiki/Pinning_points

    Dislocations require proper lattice ordering to move through a material. At grain boundaries, there is a lattice mismatch, and every atom that lies on the boundary is uncoordinated. This stops dislocations that encounter the boundary from moving.

  5. Bauschinger effect - Wikipedia

    en.wikipedia.org/wiki/Bauschinger_effect

    The pile-up of dislocations at grain boundaries and Orowan loops around strong precipitates are two main sources of these back stresses. When the strain direction is reversed, dislocations of the opposite sign can be produced from the same source that produced the slip-causing dislocations in the initial direction.

  6. Subgrain rotation recrystallization - Wikipedia

    en.wikipedia.org/wiki/Subgrain_rotation_re...

    Subgrains are defined as grains that are oriented at a < 10–15 degree angle at the grain boundary, making it a low-angle grain boundary (LAGB). Due to the relationship between the energy versus the number of dislocations at the grain boundary, there is a driving force for fewer high-angle grain boundaries (HAGB) to form and grow instead of a ...

  7. Crystallographic defect - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_defect

    Dislocations are linear defects, around which the atoms of the crystal lattice are misaligned. [14] There are two basic types of dislocations, the edge dislocation and the screw dislocation. "Mixed" dislocations, combining aspects of both types, are also common. An edge dislocation is shown. The dislocation line is presented in blue, the ...

  8. Grain boundary sliding - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_sliding

    Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.

  9. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Dislocations may be pinned due to stress field interactions with other dislocations and solute particles, creating physical barriers from second phase precipitates forming along grain boundaries. There are five main strengthening mechanisms for metals, each is a method to prevent dislocation motion and propagation, or make it energetically ...