When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002. [15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti, [16] on bipartite permutation graphs, [17] and on Ptolemaic ...

  4. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  5. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    Every three-digit sequence occurs exactly once if one visits every vertex exactly once (a Hamiltonian path). The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5]

  6. Five-room puzzle - Wikipedia

    en.wikipedia.org/wiki/Five-room_puzzle

    Because there is more than one pair of vertices with an odd number of edges, the resulting multigraph does not contain an Eulerian path nor an Eulerian circuit, which means that this puzzle cannot be solved. By bending the rules, a related puzzle could be solved.

  7. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In fact in order to answer a level ancestor query, the algorithm needs to jump from a path to another until it reaches the root and there could be Θ(√ n) of such paths on a leaf-to-root path. This leads us to an algorithm that can pre-process the tree in O( n ) time and answers queries in O( √ n ).

  8. Pointer jumping - Wikipedia

    en.wikipedia.org/wiki/Pointer_jumping

    Pointer jumping or path doubling is a design technique for parallel algorithms that operate on pointer structures, such as linked lists and directed graphs. Pointer jumping allows an algorithm to follow paths with a time complexity that is logarithmic with respect to the length of the longest path.

  9. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    After corresponding edges are added (red), the length of the Eulerian circuit is found. In graph theory and combinatorial optimization , Guan's route problem , the Chinese postman problem , postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph at least once.