Search results
Results From The WOW.Com Content Network
Because the logical or means a disjunction formula is true when either one or both of its parts are true, it is referred to as an inclusive disjunction. This is in contrast with an exclusive disjunction, which is true when one or the other of the arguments are true, but not both (referred to as exclusive or, or XOR).
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
Venn diagram for "A or B", with inclusive or (OR) Venn diagram for "A or B", with exclusive or (XOR). The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively.
In logic, a set of symbols is ... Additionally, the subsequent columns contains an informal explanation, a short example, ... logical (inclusive) disjunction: or
A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or ( ∨ {\displaystyle \vee } ), and ( ∧ {\displaystyle \wedge } ), and not ( ¬ {\displaystyle \neg } ).
The meanings of natural language connectives are not precisely identical to their nearest equivalents in classical logic. In particular, disjunction can receive an exclusive interpretation in many languages. Some researchers have taken this fact as evidence that natural language semantics is nonclassical.
The inputs and outputs are binary digits ("bits") which have two possible logical states. In addition to 1 and 0, these states may be called true and false, high and low, active and inactive, or other such pairs of symbols. Thus it performs a logical disjunction (∨) from mathematical logic.