Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
A graphical intuition of purity may be gained by looking at the relation between the density matrix and the Bloch sphere, = (+), where is the vector representing the quantum state (on or inside the sphere), and = (,,) is the vector of the Pauli matrices. Since Pauli matrices are traceless, it still holds that tr(ρ) = 1.
Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.
Also, here, for a positive semidefinite matrix , denotes a positive semidefinite matrix such that =. Note that B {\displaystyle B} is a unique matrix so defined. A generalized version of concurrence for multiparticle pure states in arbitrary dimensions [ 5 ] [ 6 ] (including the case of continuous-variables in infinite dimensions [ 7 ] ) is ...
There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...
When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ħ / 2 . For example, the spin projection operator S z affects a measurement of the spin in the z direction.
This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems. In particular, the generalized Pauli matrices for a group of qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits. [1]
The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...