Search results
Results From The WOW.Com Content Network
Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure , and tend to decrease the electrical and thermal conductivity of the material.
At greater angles, large areas of cracked, uncracked, and mixed behavior were seen. The results imply that the degree of grain boundary cracking, and hence intergranular fracture, is largely determined by boundary porosity, or the amount of atomic misfit. [12]
Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [ 18 ]
This toughening becomes noticeable when there is a narrow size distribution of particles that are appropriately sized. Researchers typically accept the findings of Faber's analysis, which suggest that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value.
Nonmetallic impurities often aggregate at grain boundaries and have the ability to impact the strength of materials by changing the grain boundary energy. Rupert et al. [26] conducted first-principles simulations to study the impact of the addition of common nonmetallic impurities on Σ5 (310) grain boundary energy in Cu. They claimed that the ...
Grain boundary sliding is the process by which grains move to prevent separation at grain boundaries. [1] This process typically occurs on timescales significantly faster than that of mass diffusion (an order of magnitude quicker). Because of this, the rate of grain boundary sliding is typically irrelevant to determining material processes.
Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.