Search results
Results From The WOW.Com Content Network
Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
Micrograph of a polycrystalline metal; grain boundaries evidenced by acid etching. Differently-oriented crystallites in a polycrystalline material. In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material.
The fracture behavior of materials can be significantly changed by the use of precipitation-based grain boundary design. For example, Meindlhumer et. al. [9] produced a thin film of AlCrN containing a specific distribution of precipitates within the grain boundaries in precipitation-based grain boundary design. The precipitates acted as a ...
The Unified Soil Classification System (USCS) is a soil classification system used in engineering and geology to describe the texture and grain size of a soil. The classification system can be applied to most unconsolidated materials, and is represented by a two-letter symbol. Each letter is described below (with the exception of Pt):
As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires much energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material.
To heal this, grain-boundary sliding occurs. The diffusional creep rate and the grain boundary sliding rate must be balanced if there are no voids or cracks remaining. When grain-boundary sliding can not accommodate the incompatibility, grain-boundary voids are generated, which is related to the initiation of creep fracture.
Embrittlement is a series complex mechanism that is not completely understood. The mechanisms can be driven by temperature, stresses, grain boundaries, or material composition. However, by studying the embrittlement process, preventative measures can be put in place to mitigate the effects. There are several ways to study the mechanisms.