Search results
Results From The WOW.Com Content Network
For intermediate values stored in digital computers, it often means the binary numeral system (m is an integer times a power of 2). The abstract single-argument "round()" function that returns an integer from an arbitrary real value has at least a dozen distinct concrete definitions presented in the rounding to integer section.
Shifting the second operand into position, as , gives it a fourth digit after the binary point. This creates the need to add an extra digit to the first operand—a guard digit—putting the subtraction into the form 2 1 × 0.1000 2 − 2 1 × 0.0111 2 {\displaystyle 2^{1}\times 0.1000_{2}-2^{1}\times 0.0111_{2}} .
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46.
I've seen two sources that claim that it's correct to round (e.g.) 2.459 to 2.4 rather than 2.5, though they both give the same bogus logic: that 2.45 might as well be rounded to 2.4 as to 2.5, and so this also applies to 2.459, even though this is a different number and is obviously closer to 2.5.
Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...
Since a single round is usually cryptographically weak, many attacks that fail to work against the full version of ciphers will work on such reduced-round variants. The result of such attack provides valuable information about the strength of the algorithm, [9] a typical break of the full cipher starts out as a success against a reduced-round ...
However, for negative numbers truncation does not round in the same direction as the floor function: truncation always rounds toward zero, the function rounds towards negative infinity. For a given number x ∈ R − {\displaystyle x\in \mathbb {R} _{-}} , the function ceil {\displaystyle \operatorname {ceil} } is used instead
In both cases, only minutes and seconds use sexagesimal notation—angular degrees can be larger than 59 (one rotation around a circle is 360°, two rotations are 720°, etc.), and both time and angles use decimal fractions of a second.